3
Fork 0
CronosAgent/CronosAgent.c
Artem Prilutskiy 9c861df1ae ..
2017-06-04 19:32:32 +03:00

910 lines
26 KiB
C

#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <getopt.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <netinet/ip.h>
#include <unistd.h>
#include <syslog.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <sys/utsname.h>
#ifdef USE_OPENSSL
#include <openssl/sha.h>
#endif
#ifndef HEADER_SHA_H
#include "sha256.h"
#define SHA256_DIGEST_LENGTH SHA256_BLOCK_SIZE
#define SHA256(data, length, hash) \
{ \
SHA256_CTX context; \
sha256_init(&context); \
sha256_update(&context, data, length); \
sha256_final(&context, hash); \
}
#endif
#ifdef __linux__
#include <endian.h>
#include <byteswap.h>
#include <sys/epoll.h>
#include <sys/timerfd.h>
#include <sys/signalfd.h>
#endif
#ifdef __MACH__
#include <launch.h>
#include <stdbool.h>
#include <sys/event.h>
#include <mach/mach.h>
#include <mach/clock.h>
#include <machine/endian.h>
#endif
#include "Rewind.h"
#include "Version.h"
#include "RingBuffer.h"
// #include "DMR.h"
#ifndef DMR_H
#define TDMA_FRAME_DURATION 60
#endif
// #include "ASNTools.h"
#ifndef ASNTOOLS_H
#define ASN_SEQUENCE 0x10
#define ASN_UNIVERSAL 0x00
#define ASN_CONSTRUCTOR 0x20
#endif
// #include "KAIROS-HAM.h"
#ifndef KAIROS_HAM_H
#define KAIROS_HAM_DEFAULT_PORT 65472
#define KAIROS_HAM_RECORD_ID 0xcbfaded8
#define KAIROS_EXCHANGE_HEADER_LENGTH 16
#endif
// #include "RemoteControl.h"
#ifndef REMOTECONTROL_H
#define REMOTE_DEFAULT_PORT 4000
#define REMOTE_STX 0x02
#define REMOTE_ETX 0x03
#endif
#define HELPER(value) #value
#define STRING(value) HELPER(value)
#define COUNT(array) sizeof(array) / sizeof(array[0])
#ifdef __cplusplus
#define CAST(type, value) const_cast<type>(value)
#else
#define CAST(type, value) (type)value
#ifndef bool
#define bool int
#define true 1
#define false 0
#endif
#endif
#ifdef __linux__
#define CHECK(event, handle) (event->data.fd == handle)
#endif
#ifdef __MACH__
#define CHECK(event, handle) (event->ident == handle) && (event->filter == EVFILT_READ)
#define htobe16(value) OSSwapHostToBigInt16(value)
#define be16toh(value) OSSwapBigToHostInt16(value)
#define htobe32(value) OSSwapHostToBigInt32(value)
#define be32toh(value) OSSwapBigToHostInt32(value)
#define htole16(value) OSSwapHostToLittleInt16(value)
#define le16toh(value) OSSwapLittleToHostInt16(value)
#define htole32(value) OSSwapHostToLittleInt32(value)
#define le32toh(value) OSSwapLittleToHostInt32(value)
#define __bswap_16(value) OSSwapConstInt16(value)
#define __bswap_32(value) OSSwapConstInt32(value)
#endif
#define MODE_CONSOLE (1 << 0)
#define MODE_SYSLOG (1 << 1)
#define MODE_DAEMON (1 << 2)
#define EVENT_LIST_LENGTH (4 + 2 + 4)
#define BUFFER_SIZE 2048 // 2 KB
#define EXPIRATION_TIME 60 // 1 minute
#define INITIAL_INTERVAL 100 * 1000000 // 100 milliseconds
int serviceMode = MODE_CONSOLE;
void print(const char* format, ...)
{
va_list arguments;
va_start(arguments, format);
if (serviceMode & MODE_CONSOLE)
vprintf(format, arguments);
if (serviceMode & MODE_SYSLOG)
vsyslog(LOG_INFO, format, arguments);
va_end(arguments);
}
int main(int argc, const char* argv[])
{
print("\n");
print("CronosAgent for BrandMeister DMR Master Server\n");
print("Copyright 2016-2017 Artem Prilutskiy (R3ABM, cyanide.burnout@gmail.com)\n");
print("Software revision " STRING(VERSION) " build " BUILD "\n");
print("\n");
// Parameters for server
const char* serverPort = "54004";
const char* serverLocation = NULL;
const char* serverPassword = NULL;
struct addrinfo* serverAddress = NULL;
// Parameters for repeater
int proxyTrapPort = 162;
uint32_t repeaterNumber = 0;
int repeaterControlPort = REMOTE_DEFAULT_PORT;
struct sockaddr_in repeaterSocketAddress;
repeaterSocketAddress.sin_family = AF_INET;
repeaterSocketAddress.sin_addr.s_addr = htonl(INADDR_ANY);
// Start up
struct option options[] =
{
{ "repeater-number", required_argument, NULL, 'n' },
{ "repeater-address", required_argument, NULL, 'r' },
{ "repeater-port", required_argument, NULL, 'c' },
{ "server-password", required_argument, NULL, 'w' },
{ "server-address", required_argument, NULL, 's' },
{ "server-port", required_argument, NULL, 'p' },
{ "trap-port", required_argument, NULL, 't' },
{ "service-mode", required_argument, NULL, 'm' },
{ NULL, 0, NULL, 0 }
};
int selection = 0;
while ((selection = getopt_long(argc, CAST(char* const*, argv), "n:r:c:w:s:p:t:m:", options, NULL)) != EOF)
switch (selection)
{
case 'n':
repeaterNumber = strtol(optarg, NULL, 10);
break;
case 'r':
inet_pton(AF_INET, optarg, &repeaterSocketAddress.sin_addr);
break;
case 'c':
repeaterControlPort = strtol(optarg, NULL, 10);
break;
case 'w':
serverPassword = optarg;
break;
case 's':
serverLocation = optarg;
break;
case 'p':
serverPort = optarg;
break;
case 't':
proxyTrapPort = strtol(optarg, NULL, 10);
break;
case 'm':
serviceMode = strtol(optarg, NULL, 10);
break;
}
if ((repeaterNumber == 0) ||
(serverPassword == NULL) ||
(serverLocation == NULL) ||
(repeaterSocketAddress.sin_addr.s_addr == htonl(INADDR_ANY)))
{
print(
"Usage:\n"
" %s\n"
" --repeater-address <IP address of repeater>\n"
" --repeater-number <Registered ID of repeater>\n"
" --repeater-port <port number of interface Remote Control>\n"
" --server-password <access password of BrandMeister DMR Server>\n"
" --server-address <domain name of BrandMeister DMR Server>\n"
" --server-port <service port for BrandMeister DMR Server>\n"
" --trap-port <port for SNMP Traps>\n"
" --service-mode <set of bits>\n"
" bit 0 - print to standard output\n"
" bit 1 - print to system log\n"
" bit 2 - run as daemon\n"
"\n",
argv[0]);
return EXIT_FAILURE;
}
if (serviceMode & MODE_SYSLOG)
{
// Set proper origin for syslog (required by OpenWRT)
openlog("CronosAgent", LOG_NOWAIT | LOG_PID, LOG_USER);
}
#ifdef __linux__
if ((serviceMode & MODE_DAEMON) &&
(daemon(-1, -1) < 0))
{
print("Error launching daemon");
return EXIT_FAILURE;
}
#endif
#ifdef __MACH__
if (serviceMode & MODE_DAEMON)
{
launch_data_t request = launch_data_new_string(LAUNCH_KEY_CHECKIN);
launch_data_t response = launch_msg(request);
launch_data_free(request);
if (response == NULL)
{
print("Error calling launchd");
return EXIT_FAILURE;
}
launch_data_type_t type = launch_data_get_type(response);
launch_data_free(response);
if (type == LAUNCH_DATA_ERRNO)
{
print("launchd returned error %d\n", launch_data_get_errno(response));
return EXIT_FAILURE;
}
// launchd will return dictionary of job for successful check-in
if (type != LAUNCH_DATA_DICTIONARY)
{
print("Error launching daemon");
return EXIT_FAILURE;
}
}
#endif
// Resolve server address
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_socktype = SOCK_DGRAM;
#ifdef __linux__
hints.ai_flags = AI_ADDRCONFIG;
hints.ai_family = AF_UNSPEC;
#endif
#ifdef __MACH__
hints.ai_flags = AI_V4MAPPED;
hints.ai_family = AF_INET6;
#endif
if (getaddrinfo(serverLocation, serverPort, &hints, &serverAddress) != 0)
{
print("Error resolving server address %s\n", serverLocation);
return EXIT_FAILURE;
}
// Initialize proxy sockets
int trapHandle;
int mediaHandle;
int remoteHandle;
int socketOptionValue;
struct sockaddr_in proxySocketAddress;
socklen_t proxySocketLength = sizeof(proxySocketAddress);
proxySocketAddress.sin_family = AF_INET;
proxySocketAddress.sin_addr.s_addr = htonl(INADDR_ANY);
proxySocketAddress.sin_port = htons(proxyTrapPort);
trapHandle = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if ((trapHandle < 0) ||
(bind(trapHandle, (struct sockaddr*)&proxySocketAddress, proxySocketLength) < 0))
{
print("Error opening port for SNMP Traps\n");
return EXIT_FAILURE;
}
socketOptionValue = true;
proxySocketAddress.sin_port = 0;
remoteHandle = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if ((remoteHandle < 0) ||
(bind(remoteHandle, (struct sockaddr*)&proxySocketAddress, proxySocketLength) < 0) ||
(setsockopt(remoteHandle, IPPROTO_IP, IP_PKTINFO, &socketOptionValue, sizeof(socketOptionValue)) < 0))
{
print("Error opening port for Remote Control\n");
return EXIT_FAILURE;
}
socketOptionValue = IPTOS_LOWDELAY;
proxySocketAddress.sin_port = 0;
mediaHandle = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if ((mediaHandle < 0) ||
(bind(mediaHandle, (struct sockaddr*)&proxySocketAddress, proxySocketLength) < 0) ||
(getsockname(mediaHandle, (struct sockaddr*)&proxySocketAddress, &proxySocketLength) < 0) ||
(setsockopt(mediaHandle, IPPROTO_IP, IP_TOS, &socketOptionValue, sizeof(socketOptionValue)) < 0))
{
print("Error opening port for External Server\n");
return EXIT_FAILURE;
}
// Initialize uplink socket
int uplinkHandle;
struct sockaddr_in6 uplinkSocketAddress;
uplinkSocketAddress.sin6_family = AF_INET6;
uplinkSocketAddress.sin6_addr = in6addr_any;
uplinkSocketAddress.sin6_port = 0;
uplinkSocketAddress.sin6_scope_id = 0;
uplinkHandle = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
if ((uplinkHandle < 0) ||
(bind(uplinkHandle, (struct sockaddr*)&uplinkSocketAddress, sizeof(uplinkSocketAddress)) < 0))
{
print("Error opening port for Rewind Uplink\n");
return EXIT_FAILURE;
}
#ifdef __linux__
// Initialize timer handle
int timerHandle1;
int timerHandle2;
struct itimerspec timerInterval;
memset(&timerInterval, 0, sizeof(timerInterval));
timerInterval.it_value.tv_nsec = INITIAL_INTERVAL;
timerInterval.it_interval.tv_sec = REWIND_KEEP_ALIVE_INTERVAL;
timerHandle1 = timerfd_create(CLOCK_MONOTONIC, 0);
timerfd_settime(timerHandle1, 0, &timerInterval, NULL);
timerInterval.it_interval.tv_sec = 0;
timerInterval.it_interval.tv_nsec = TDMA_FRAME_DURATION * 1000000;
timerHandle2 = timerfd_create(CLOCK_MONOTONIC, 0);
timerfd_settime(timerHandle2, 0, &timerInterval, NULL);
// Initialize signal handle
int signalHandle;
sigset_t signalMask;
sigemptyset(&signalMask);
sigaddset(&signalMask, SIGINT);
sigaddset(&signalMask, SIGHUP);
sigaddset(&signalMask, SIGTERM);
sigaddset(&signalMask, SIGQUIT);
sigprocmask(SIG_BLOCK, &signalMask, NULL);
signalHandle = signalfd(-1, &signalMask, 0);
// Initialize ePoll
int pollHandle;
struct epoll_event event;
pollHandle = epoll_create(EVENT_LIST_LENGTH);
event.events = EPOLLIN;
event.data.fd = mediaHandle;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = trapHandle;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = remoteHandle;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = uplinkHandle;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = timerHandle1;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = timerHandle2;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
event.events = EPOLLIN;
event.data.fd = signalHandle;
epoll_ctl(pollHandle, EPOLL_CTL_ADD, event.data.fd, &event);
// Initialize clock
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
#endif
#ifdef __MACH__
// Prepare signal handlers
signal(SIGINT, SIG_IGN);
signal(SIGHUP, SIG_IGN);
signal(SIGTERM, SIG_IGN);
signal(SIGQUIT, SIG_IGN);
// Initialize KQueue
int queueHandle;
struct kevent changes[EVENT_LIST_LENGTH];
struct kevent* change = changes;
queueHandle = kqueue();
EV_SET(change, mediaHandle, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, uplinkHandle, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, remoteHandle, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, trapHandle, EVFILT_READ, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, 1, EVFILT_TIMER, EV_ADD | EV_ENABLE, NOTE_SECONDS, REWIND_KEEP_ALIVE_INTERVAL, 0);
change ++;
EV_SET(change, 2, EVFILT_TIMER, EV_ADD | EV_ENABLE, NOTE_MSECONDS, TDMA_FRAME_DURATION, 0);
change ++;
EV_SET(change, SIGINT, EVFILT_SIGNAL, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, SIGHUP, EVFILT_SIGNAL, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, SIGTERM, EVFILT_SIGNAL, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
EV_SET(change, SIGQUIT, EVFILT_SIGNAL, EV_ADD | EV_ENABLE, 0, 0, 0);
change ++;
// Initialize clock service
clock_serv_t clockService;
mach_timespec_t now;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &clockService);
clock_get_time(clockService, &now);
#endif
// Prepare buffers
void* controlBuffer = alloca(BUFFER_SIZE);
struct RewindData* incomingBuffer = (struct RewindData*)alloca(sizeof(struct RewindData) + BUFFER_SIZE);
struct RewindData* outgoingBuffer = (struct RewindData*)alloca(sizeof(struct RewindData) + BUFFER_SIZE);
memset(outgoingBuffer, 0, sizeof(struct RewindData));
memcpy(outgoingBuffer, REWIND_PROTOCOL_SIGN, REWIND_SIGN_LENGTH);
size_t passwordLength = strlen(serverPassword);
time_t watchDog = now.tv_sec + EXPIRATION_TIME;
struct RingBuffer ringBuffers[2];
memset(ringBuffers, 0, sizeof(ringBuffers));
uint32_t sequenceNumbers[] =
{
0,
0,
0,
0
};
struct utsname systemName;
uname(&systemName);
// Main loop
bool running = true;
print("Server started\n");
while (running)
{
#ifdef __linux__
struct epoll_event events[EVENT_LIST_LENGTH];
int count = epoll_wait(pollHandle, events, EVENT_LIST_LENGTH, -1);
#endif
#ifdef __MACH__
struct kevent events[EVENT_LIST_LENGTH];
int count = kevent(queueHandle, changes, EVENT_LIST_LENGTH, events, EVENT_LIST_LENGTH, NULL);
#endif
if (count < 0)
{
int error = errno;
print("Error processing handles: %s (%d)\n", strerror(error), error);
break;
}
for (size_t index = 0; index < count; index ++)
{
#ifdef __linux__
struct epoll_event* event = events + index;
#endif
#ifdef __MACH__
struct kevent* event = events + index;
#endif
// Handle packet from the uplink
if (CHECK(event, uplinkHandle))
{
struct sockaddr_in6 address;
socklen_t size = sizeof(address);
size_t length = recvfrom(uplinkHandle, incomingBuffer, BUFFER_SIZE, 0, (struct sockaddr*)&address, &size);
if ((length >= sizeof(struct RewindData)) &&
((serverAddress->ai_addr->sa_family == AF_INET) || /* Work-around for Linux */
(memcmp(&address, serverAddress->ai_addr, serverAddress->ai_addrlen) == 0)) &&
(memcmp(incomingBuffer->sign, REWIND_PROTOCOL_SIGN, REWIND_SIGN_LENGTH) == 0))
{
uint16_t type = le16toh(incomingBuffer->type);
size_t length = le16toh(incomingBuffer->length);
if (type == REWIND_TYPE_EXTERNAL_SERVER)
{
uint16_t flags = le16toh(incomingBuffer->flags);
uint32_t number = le32toh(incomingBuffer->number);
if (flags & REWIND_FLAG_REAL_TIME_1)
{
PokeData(ringBuffers + 0, number, incomingBuffer->data, length);
continue;
}
if (flags & REWIND_FLAG_REAL_TIME_2)
{
PokeData(ringBuffers + 1, number, incomingBuffer->data, length);
continue;
}
repeaterSocketAddress.sin_port = htons(KAIROS_HAM_DEFAULT_PORT);
sendto(mediaHandle, incomingBuffer->data, length, 0, (struct sockaddr*)&repeaterSocketAddress, sizeof(struct sockaddr_in));
continue;
}
if (type == REWIND_TYPE_REMOTE_CONTROL)
{
repeaterSocketAddress.sin_port = htons(repeaterControlPort);
sendto(remoteHandle, incomingBuffer->data, length, 0, (struct sockaddr*)&repeaterSocketAddress, sizeof(struct sockaddr_in));
continue;
}
if (type == REWIND_TYPE_ADDRESS_NOTICE)
{
socketOptionValue = false;
setsockopt(remoteHandle, IPPROTO_IP, IP_PKTINFO, &socketOptionValue, sizeof(socketOptionValue));
continue;
}
if (type == REWIND_TYPE_REPORT)
{
incomingBuffer->data[length] = '\0';
print("Server message: %s\n", incomingBuffer->data);
continue;
}
if (type == REWIND_TYPE_CHALLENGE)
{
print("Authenticating with agent\n");
memcpy(incomingBuffer->data + length, serverPassword, passwordLength);
SHA256(incomingBuffer->data, length + passwordLength, outgoingBuffer->data);
outgoingBuffer->type = htole16(REWIND_TYPE_AUTHENTICATION);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = htole16(SHA256_DIGEST_LENGTH);
sendto(uplinkHandle, outgoingBuffer, sizeof(struct RewindData) + SHA256_DIGEST_LENGTH, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
socketOptionValue = true;
setsockopt(remoteHandle, IPPROTO_IP, IP_PKTINFO, &socketOptionValue, sizeof(socketOptionValue));
continue;
}
if (type == REWIND_TYPE_KEEP_ALIVE)
{
#ifdef __linux__
clock_gettime(CLOCK_MONOTONIC, &now);
#endif
#ifdef __MACH__
clock_get_time(clockService, &now);
#endif
watchDog = now.tv_sec + EXPIRATION_TIME;
continue;
}
if (type == REWIND_TYPE_CLOSE)
{
print("Disconnect request received\n");
running = false;
break;
}
}
}
// Handle packet of External Server
if (CHECK(event, mediaHandle))
{
struct sockaddr_in address;
socklen_t size = sizeof(address);
uint8_t* buffer = (uint8_t*)outgoingBuffer->data;
size_t length = recvfrom(mediaHandle, buffer, BUFFER_SIZE, 0, (struct sockaddr*)&address, &size);
if ((size == sizeof(struct sockaddr_in)) &&
(address.sin_addr.s_addr == repeaterSocketAddress.sin_addr.s_addr) &&
(length >= KAIROS_EXCHANGE_HEADER_LENGTH) &&
(le32toh(*(uint32_t*)buffer) == KAIROS_HAM_RECORD_ID))
{
int value = buffer[8] & 3;
outgoingBuffer->type = htole16(REWIND_TYPE_EXTERNAL_SERVER);
outgoingBuffer->flags = htole16(value);
outgoingBuffer->number = htole32(++ sequenceNumbers[value]);
outgoingBuffer->length = htole16(length);
length += sizeof(struct RewindData);
sendto(uplinkHandle, outgoingBuffer, length, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
}
continue;
}
// Handle packet of Remote Control
if (CHECK(event, remoteHandle))
{
struct sockaddr_in address;
uint8_t* buffer = (uint8_t*)outgoingBuffer->data;
struct iovec vector;
vector.iov_base = buffer;
vector.iov_len = BUFFER_SIZE;
struct msghdr message;
message.msg_name = &address;
message.msg_namelen = sizeof(address);
message.msg_iov = &vector;
message.msg_iovlen = 1;
message.msg_control = controlBuffer;
message.msg_controllen = BUFFER_SIZE;
message.msg_flags = 0;
size_t length = recvmsg(remoteHandle, &message, 0);
if ((message.msg_namelen == sizeof(struct sockaddr_in)) &&
(address.sin_addr.s_addr == repeaterSocketAddress.sin_addr.s_addr) &&
(buffer[0] == REMOTE_STX) &&
(buffer[length - 1] == REMOTE_ETX) &&
(length >= 8))
{
outgoingBuffer->type = htole16(REWIND_TYPE_REMOTE_CONTROL);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = htole16(length);
length += sizeof(struct RewindData);
sendto(uplinkHandle, outgoingBuffer, length, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
// Transmit destination address of received packet
// to make correct messages for External Server interface
struct cmsghdr* control = CMSG_FIRSTHDR(&message);
while (control != NULL)
{
if (control->cmsg_type == IP_PKTINFO)
{
struct in_pktinfo* information = (struct in_pktinfo*)CMSG_DATA(control);
size_t length = sizeof(struct RewindAddressData);
struct RewindAddressData* data = (struct RewindAddressData*)outgoingBuffer->data;
data->address.s_addr = information->ipi_addr.s_addr;
data->port = __bswap_16(proxySocketAddress.sin_port);
outgoingBuffer->type = htole16(REWIND_TYPE_ADDRESS_NOTICE);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = htole16(length);
length += sizeof(struct RewindData);
sendto(uplinkHandle, outgoingBuffer, length, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
break;
}
control = CMSG_NXTHDR(&message, control);
}
}
continue;
}
// Handle packet of SNMP Trap
if (CHECK(event, trapHandle))
{
struct sockaddr_in address;
socklen_t size = sizeof(address);
uint8_t* buffer = (uint8_t*)outgoingBuffer->data;
size_t length = recvfrom(trapHandle, buffer, BUFFER_SIZE, 0, (struct sockaddr*)&address, &size);
if ((size == sizeof(struct sockaddr_in)) &&
(address.sin_addr.s_addr == repeaterSocketAddress.sin_addr.s_addr) &&
(buffer[0] == (ASN_UNIVERSAL | ASN_CONSTRUCTOR | ASN_SEQUENCE)) &&
(length >= 20))
{
outgoingBuffer->type = htole16(REWIND_TYPE_SNMP_TRAP);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = htole16(length);
length += sizeof(struct RewindData);
sendto(uplinkHandle, outgoingBuffer, length, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
}
continue;
}
// Handle timer to transmit keep-alive
#ifdef __linux__
if (event->data.fd == timerHandle1)
{
uint64_t information;
read(timerHandle1, &information, sizeof(information));
clock_gettime(CLOCK_MONOTONIC, &now);
#endif
#ifdef __MACH__
if ((event->ident == 1) &&
(event->filter == EVFILT_TIMER))
{
clock_get_time(clockService, &now);
#endif
if (now.tv_sec > watchDog)
{
print("Connection time-out expired\n");
running = false;
break;
}
size_t length = sizeof(struct RewindVersionData);
struct RewindVersionData* data = (struct RewindVersionData*)outgoingBuffer->data;
data->number = htole32(repeaterNumber);
data->service = REWIND_SERVICE_CRONOS_AGENT;
length += sprintf(data->description,
"CronosAgent " STRING(VERSION) " %s %s " BUILD,
systemName.sysname,
systemName.machine);
outgoingBuffer->type = htole16(REWIND_TYPE_KEEP_ALIVE);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = htole16(length);
length += sizeof(struct RewindData);
sendto(uplinkHandle, outgoingBuffer, length, 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
continue;
}
// Handle timer to process RingBuffer
#ifdef __linux__
if (event->data.fd == timerHandle2)
{
uint64_t information;
read(timerHandle2, &information, sizeof(information));
#endif
#ifdef __MACH__
if ((event->ident == 2) &&
(event->filter == EVFILT_TIMER))
{
#endif
repeaterSocketAddress.sin_port = htons(KAIROS_HAM_DEFAULT_PORT);
ProcessBuffer(ringBuffers + 0, mediaHandle, &repeaterSocketAddress);
ProcessBuffer(ringBuffers + 1, mediaHandle, &repeaterSocketAddress);
continue;
}
// Handle signal from the kernel
#ifdef __linux__
if (event->data.fd == signalHandle)
{
struct signalfd_siginfo information;
read(signalHandle, &information, sizeof(information));
#endif
#ifdef __MACH__
if (event->filter == EVFILT_SIGNAL)
{
#endif
outgoingBuffer->type = htole16(REWIND_TYPE_CLOSE);
outgoingBuffer->flags = htole16(REWIND_FLAG_DEFAULT_SET);
outgoingBuffer->number = htole32(++ sequenceNumbers[0]);
outgoingBuffer->length = 0;
sendto(uplinkHandle, outgoingBuffer, sizeof(struct RewindData), 0, serverAddress->ai_addr, serverAddress->ai_addrlen);
#ifdef __linux__
if ((information.ssi_signo == SIGINT) ||
(information.ssi_signo == SIGTERM) ||
(information.ssi_signo == SIGQUIT))
#endif
#ifdef __MACH__
if ((event->ident == SIGINT) ||
(event->ident == SIGTERM) ||
(event->ident == SIGQUIT))
#endif
{
running = false;
break;
}
}
}
}
print("Server stopped\n");
// Clean up
close(uplinkHandle);
close(remoteHandle);
close(mediaHandle);
close(trapHandle);
#ifdef __linux__
close(pollHandle);
close(timerHandle1);
close(timerHandle2);
close(signalHandle);
#endif
#ifdef __MACH__
close(queueHandle);
mach_port_deallocate(mach_task_self(), clockService);
#endif
freeaddrinfo(serverAddress);
return EXIT_SUCCESS;
};